Drell-Yan normalization cross-check

Sasha Lebedev (ISU)

Reminder

Last time I've shown calculation of correlated background under Y peak.

Scaling of PYTHIA cross-section was necessary for charm and bottom in order to reproduce the data (factor of >3).

What to do with Drell-Yan?

Compare to ppg142:

"Y(1S+2S+3S) production in d+Au and p+p collisions at $\sqrt{s_{NN}}$ = 200 GeV and cold-nuclear-matter effects", **Phys. Rev. C 87, 044909 (2013)**

ppg142

Cuts:

$$p > 2.7 \ GeV/c$$
 $\frac{(p_1 - p_2)}{(p_1 + p_2)} < 0.6$

Trigger efficiency correction:

$$C = \varepsilon_{MB} / \varepsilon_{DY} = 0.69$$

$$\frac{dN}{dm}$$
 x 0.7 GeV/c / C

Other cuts, tracking efficiency, dead areas?

The comparison

Blue line: NLO Drell-Yan from previous slide.

Black: my simulation with tracking efficiency (including dead areas) = 100%

Gray: single track inefficiency = 75%

Reasonable agreement with NLO pQCD and data.